Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation.
نویسندگان
چکیده
Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.
منابع مشابه
Peripheral hyperinsulinemia promotes tau phosphorylation in vivo.
Cerebral insulin receptors play an important role in regulation of energy homeostasis and development of neurodegeneration. Accordingly, type 2 diabetes characterized by insulin resistance is associated with an increased risk of developing Alzheimer's disease. Formation of neurofibrillary tangles, which contain hyperphosphorylated tau, represents a key step in the pathogenesis of neurodegenerat...
متن کاملThe Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action
Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...
متن کاملRegulation of brain insulin signaling: A new function for tau
In this issue of JEM, Marciniak et al. (https ://doi .org /10 .1084 /jem .20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of ...
متن کاملRegulation of brain insulin signaling: A new function for tau
In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function.
متن کاملRegulation of brain insulin signaling: A new function for tau
In this issue of JEM, Marciniak et al. (https ://doi .org /10 .1084 /jem .20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 18 شماره
صفحات -
تاریخ انتشار 2003